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Abstract—In this project, we considered the problem of        

identifying the digit with the highest numeric value in a 3-digit           
image by applying methods such as Convolutional Neural        
Network, and transfer learning, with the Keras library run on          
TensorFlow backend. We investigated how changing the       
parameters and using a technique called data augmentation        
can affect the performance of our model. In the end, we           
achieved an accuracy of 0.97866 on the Kaggle competition.  

 

I. INTRODUCTION 
As image recognition has developed rapidly in recent        

years, it has many practical applications, and one of the          
most critical areas is handwriting recognition. It can be         
instrumental when converting images into text files.       
Handwritten digit recognition is an essential part of        
handwriting recognition. 

This paper presents the work and results based on the          
supervised learning methodology to find the largest one in         
three handwritten numbers from 0 to 9 using the         
Convolutional Neural Network. 

Convolutional Neural Network is a kind of feedforward        
neural network containing convolution calculation, which is       
one of the representative algorithms of deep learning. The         
input layer of the convolutional neural network can process         
multidimensional data. Here we input three-dimensional      
input data, that is, pixels and RGB channels on a          
two-dimensional plane. 

In this case, we will use VGG16, which is one of the            
convolutional neural network algorithms developed by the       
Visual Geometry Group (VGG) of Oxford University [2].        
The hidden layer of VGG-16 consists of 13 convolutional         
layers, 3 fully connected layers, and 5 pooled layers. Among          
them, the convolutional layer and the fully connected layer         
have weight coefficients, so they are also called weight         
layers, and the total number is 13 + 3 = 16, which is the              
reason for 16 in VGG16. 

VGGNet only uses 3×3 convolution kernels and keeps         
the output feature map size in the convolutional layer         
unchanged. Double the number of channels and half the size          
of the feature map output in the pooled layer also simplifies           
the topology of the neural network and achieves good         
results. 

 

 

(Figure 1. The structure of VGGNet [1]) 

 

II. RELATED WORK 

The digit recognition problem on the MNIST dataset is         
well studied. Before deciding what kind of classifiers to use          
for the problem, we want to investigate the previous works          
by others in the domain of digit recognition and build up our            
solution from there.  

From the original VGG paper, we understood that        
adding deeper depth to a CNN is beneficial for its          
classification accuracy and that the conclusion generalizes       
well to datasets other than the dataset used in the paper[4].           
We would start from the VGG-16 model and verify the          
statement in the paper. 

We also understood that, according to Shorten and        
Khoshgoftaar, that “Data Augmentation can improve the       
performance of their models and expand limited datasets to         
take advantage of the capabilities of big data”[5]. This         
method expands the dataset by performing various changes        
to an image, such as flipping, shearing, shifting ,and         
rotation. We want to implement this method in our         
classifier. It would be interesting to see how the Data          
Augmentation method can affect our accuracy result. 

III. TOOL 

PyCharm 2019.2.4 (Professional Edition) 
Anaconda 2019.10 with Python 3.7 
tensorflow-gpu 1.14.0 
keras-gpu 2.24 
NVIDIA CUDA Toolkit 10.1 Update 2  
NVIDIA cuDNN 7.6(v100) 
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IV. DATASET AND SETUP 

The modified MNIST competition on Kaggle provides a        
labeled dataset of 50,000 images saved as (128*128) arrays         
in which the labels indicate the most significant numbers are          
recognized. And a dataset of 10,000 images for testing         
purposes. We use pandas.read_pickle(), The method in the        
example provided on Kaggle to read the training dataset and          
test dataset. Moreover, pandas.read_csv() for the labels of        
the training dataset. 

We have noticed that in this data set, the images are           
grayscale. In order to use ImageNet's pretrained weight, we         
convert the grayscale images into RGB images, which is to          
change [a] to [a, a, a] without affecting the properties          
(colors) of the image itself. 

Similar to other neural network algorithms, the input        
features of the convolutional neural network need to be         
normalized due to learning using the gradient descent        
algorithm. The input data are pixels whose values        
distributed at [0, 255] can be normalized to the interval [0,           
1]. The standardization of input features is beneficial to         
improve the learning efficiency and performance of       
convolutional neural networks. 

Then we split the training dataset and the corresponding         
labels into two parts: the training set and the validation set           
with the split ratio 9:1, which is 45,000 samples for training           
and 5,000 samples for validation. 

In order to achieve more accurate results, we will try to           
expand the size of the training data by rotating the original           
images within a specific range of random angles, shear the          
original images along an axis, and so on. Also, data          
Augmentation prevents overfitting by modifying limited      
datasets to possess the characteristics of big data. 

Finally, we use the preprocess_input() method provided       
by the vgg16 model to get our normalized training dataset to           
be vgg16 ready. 

V. PROPOSED APPROACH AND RESULTS 

For the instantiation and compilation of the vgg16 model, 
there are some parameters we do not have many choices, 
and we list them here as follows: 

1. Instantiation: 
weights='imagenet' 
include_top=False 
input_shape=(128, 128, 3) 

2. Compilation: 
loss='sparse_categorical_crossentropy' 
metrics=['accuracy'] 
 

To find the best combination of the other 
hyperparameters, we designed two sets of controlled trials. 
For the first experiment, we did not do data augmentation, 
only change the batch size, the number of epochs, optimizer, 
and learning rate. For the selection of optimizer, adam and 
SGD are two kinds of optimizers that are widely used in 
convolutional neural networks, so we choose these two to 

compare. In the second experiment, we have the same 
controlled variables, but we do use data augmentation. 
 
 

batch 
size 

epochs optimizer learning 
rate 

validation 
/test accuracy 

32 12 adam 0.0001 99.17% 
/ 97.87% 

32 20 adam 0.0001 99.56% 
/ 97.43% 

128 12 adam 0.0001 99.52% 
/ 96.67% 

32 12 adam 0.001 26.78% 
/ 24.80% 

32 20 SGD 0.0001 93.16% 
/ 88.30% 

 
(Table 1: VGG16) 

 
 

batch 
size 

epochs optimizer learning 
rate 

validation 
/test accuracy 

32 12 adam  0.0001 98.59% 
/ 97.77% 

32 20 adam 0.0001 98.31% 
/ 97.27% 

128 12 adam 0.0001 95.77% 
/ 94.70% 

32 12 adam 0.001 21.24% 
/ 21.73% 

32 20 SGD 0.0001 81.00% 
/ 79.87% 

 
 

(Table 2: VGG16 with data augmentation) 
 

(Note: Validation accuracy represents the accuracy we 
tested using a portion of the training dataset. And test 
accuracy is the accuracy of the system scored after we 

submitted the prediction.csv to the Kaggle competition.) 
 

We can easily observe excellent performance when the 
learning rate is 0.0001, and the optimizer is adam 
(accuracies are all higher than 95%). However, when the 
learning rate is 0.001, it is too large for the model to 
converge, the loss never drops, and the accuracy never rises 
from the first epoch to the end(always around 26%). 
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(Figure 2. VGG16 Training and Validation accuracy) 

 
(Figure 3. VGG16 Training and Validation loss) 

 
(Figure 4. SGD Training and Validation accuracy ) 

 
(Figure 5. SGD Training and Validation loss) 

We can see from the above figure (Figure 2, 3, 4, 5) that 
different optimizers have different learning curves. Adam 
can learn a lot in the first 1~3 epoch to achieve high 
accuracy and low loss. Nevertheless, the progress in the 
latter epochs is relatively little. SGD, although the final 
result is not as good as adam, its learning curve is smoother 
and closer to linear, so if we run more epochs with VGG16 
with SGD optimizer, we may be able to achieve a good 
result. 

 

 
（Figure 6. VGG16 with Data Augmentation Training and 

Validation accuracy) 

 
(Figure 7. VGG16 with Data Augmentation Training and 

Validation loss) 
We can see from Figure 2, 3, 6, 7 that the learning curve 

for both cases are approximately the same, with one 
significant difference that the VGG16 model with Data 
Augmentation presents “zig-zag” patterns in both validation 
accuracy and validation loss. We think the reason behind the 
“zig-zag” pattern is that the Data Augmentation process 
adds noise to the dataset. The added noise would help 
prevent our model from overfitting on the given training set, 
according to Chris M. Bishop, that “It is well known that the 
addition of noise to the input data of a neural network 
during training can, in some circumstances, lead to 
significant improvements in generalization performance”[6]. 
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VI. DISCUSSION AND CONCLUSION 

1. Conclusion. 
    i. According to Table 1, compared to the first 
and third samples, it can be concluded that a larger 
batch size will not have a better performance. 
Besides, by comparing 12 epochs and 20 epochs' 
accuracies, it can be shown that the improvement 
of the epoch does not necessarily lead to better 
performance. The reason for the above two 
situations may be overfitting. By viewing the 
second row and the last row, it is evident that adam 
will result in significantly  higher accuracy than 
SGD. Moreover, VGG with adam optimizer is a 
'quick learner' comparing to SGD since it always 
reaches a good accuracy/loss performance within 
three epochs. Therefore, adam is a better choice 
when choosing the type of optimizer. 
    ii. Data augmentation does not help with 
improving the final accuracy comparing to each 
row in Table 2 and Table 1, respectively. 

2. Future work. 
    i. Try to run more epochs with the SGD 
optimizer because from the perspective of Figures 
4 and 5, SGD has not yet reached its bottleneck. 
    ii. We have just discussed the VGG model so 
far. Stacking different models may be a possible 
approach to improve the accuracy.  
    iii. We can also try early stopping via a callback 
called 'EarlyStopping' provided by Keras. 
 

VII. APPENDIX 

Introduction to Adam Optimizer and SGD Optimizer: 
1. SGD  optimizer: 

The algorithm immediately calculates the gradient 
of the loss function to update the parameters every 
time one data is read. 
θ = θ − η ⋅ ∇θJ(θ;x(i);y(i)) 

2. Adam Optimizer: 
The Adam optimization algorithm is intuitively a 
combination of RMSprop and AdaGrad. It 
comprehensively considers the first Moment 
Estimation of the gradient and the Second Moment 
Estimation, which is the uncentralized variance of 
the gradient and calculates the update step size. 
 

VIII. STATEMENT OF CONTRIBUTIONS 

Cheng Li: Data processing, Implementation of VGG and 
other models, Report editing 
Muhang Li: Data processing, Implementation VGG with 
data augmentation, Report editing. 
Chicheng Zheng: Data collection and analysis, Making 
charts and tables, Report editing. 
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