
Mini Project3 Report

Chicheng, Zheng
260874447

chicheng.zheng@mail.mcgill.ca

Cheng, Li
260706615

cheng.li2@mail.mcgill.ca

Muhang, Li
260736135

muhang.li@mail.mcgill.ca

Abstract—In this project, we considered the problem of

identifying the digit with the highest numeric value in a 3-digit
image by applying methods such as Convolutional Neural
Network, and transfer learning, with the Keras library run on
TensorFlow backend. We investigated how changing the
parameters and using a technique called data augmentation
can affect the performance of our model. In the end, we
achieved an accuracy of 0.97866 on the Kaggle competition.

I. INTRODUCTION
As image recognition has developed rapidly in recent

years, it has many practical applications, and one of the
most critical areas is handwriting recognition. It can be
instrumental when converting images into text files.
Handwritten digit recognition is an essential part of
handwriting recognition.

This paper presents the work and results based on the
supervised learning methodology to find the largest one in
three handwritten numbers from 0 to 9 using the
Convolutional Neural Network.

Convolutional Neural Network is a kind of feedforward
neural network containing convolution calculation, which is
one of the representative algorithms of deep learning. The
input layer of the convolutional neural network can process
multidimensional data. Here we input three-dimensional
input data, that is, pixels and RGB channels on a
two-dimensional plane.

In this case, we will use VGG16, which is one of the
convolutional neural network algorithms developed by the
Visual Geometry Group (VGG) of Oxford University [2].
The hidden layer of VGG-16 consists of 13 convolutional
layers, 3 fully connected layers, and 5 pooled layers. Among
them, the convolutional layer and the fully connected layer
have weight coefficients, so they are also called weight
layers, and the total number is 13 + 3 = 16, which is the
reason for 16 in VGG16.

VGGNet only uses 3×3 convolution kernels and keeps
the output feature map size in the convolutional layer
unchanged. Double the number of channels and half the size
of the feature map output in the pooled layer also simplifies
the topology of the neural network and achieves good
results.

(Figure 1. The structure of VGGNet [1])

II. RELATED WORK

The digit recognition problem on the MNIST dataset is
well studied. Before deciding what kind of classifiers to use
for the problem, we want to investigate the previous works
by others in the domain of digit recognition and build up our
solution from there.

From the original VGG paper, we understood that
adding deeper depth to a CNN is beneficial for its
classification accuracy and that the conclusion generalizes
well to datasets other than the dataset used in the paper[4].
We would start from the VGG-16 model and verify the
statement in the paper.

We also understood that, according to Shorten and
Khoshgoftaar, that “Data Augmentation can improve the
performance of their models and expand limited datasets to
take advantage of the capabilities of big data”[5]. This
method expands the dataset by performing various changes
to an image, such as flipping, shearing, shifting ,and
rotation. We want to implement this method in our
classifier. It would be interesting to see how the Data
Augmentation method can affect our accuracy result.

III. TOOL

PyCharm 2019.2.4 (Professional Edition)
Anaconda 2019.10 with Python 3.7
tensorflow-gpu 1.14.0
keras-gpu 2.24
NVIDIA CUDA Toolkit 10.1 Update 2
NVIDIA cuDNN 7.6(v100)

1

IV. DATASET AND SETUP

The modified MNIST competition on Kaggle provides a
labeled dataset of 50,000 images saved as (128*128) arrays
in which the labels indicate the most significant numbers are
recognized. And a dataset of 10,000 images for testing
purposes. We use pandas.read_pickle(), The method in the
example provided on Kaggle to read the training dataset and
test dataset. Moreover, pandas.read_csv() for the labels of
the training dataset.

We have noticed that in this data set, the images are
grayscale. In order to use ImageNet's pretrained weight, we
convert the grayscale images into RGB images, which is to
change [a] to [a, a, a] without affecting the properties
(colors) of the image itself.

Similar to other neural network algorithms, the input
features of the convolutional neural network need to be
normalized due to learning using the gradient descent
algorithm. The input data are pixels whose values
distributed at [0, 255] can be normalized to the interval [0,
1]. The standardization of input features is beneficial to
improve the learning efficiency and performance of
convolutional neural networks.

Then we split the training dataset and the corresponding
labels into two parts: the training set and the validation set
with the split ratio 9:1, which is 45,000 samples for training
and 5,000 samples for validation.

In order to achieve more accurate results, we will try to
expand the size of the training data by rotating the original
images within a specific range of random angles, shear the
original images along an axis, and so on. Also, data
Augmentation prevents overfitting by modifying limited
datasets to possess the characteristics of big data.

Finally, we use the preprocess_input() method provided
by the vgg16 model to get our normalized training dataset to
be vgg16 ready.

V. PROPOSED APPROACH AND RESULTS

For the instantiation and compilation of the vgg16 model,
there are some parameters we do not have many choices,
and we list them here as follows:

1. Instantiation:
weights='imagenet'
include_top=False
input_shape=(128, 128, 3)

2. Compilation:
loss='sparse_categorical_crossentropy'
metrics=['accuracy']

To find the best combination of the other
hyperparameters, we designed two sets of controlled trials.
For the first experiment, we did not do data augmentation,
only change the batch size, the number of epochs, optimizer,
and learning rate. For the selection of optimizer, adam and
SGD are two kinds of optimizers that are widely used in
convolutional neural networks, so we choose these two to

compare. In the second experiment, we have the same
controlled variables, but we do use data augmentation.

batch
size

epochs optimizer learning
rate

validation
/test accuracy

32 12 adam 0.0001 99.17%
/ 97.87%

32 20 adam 0.0001 99.56%
/ 97.43%

128 12 adam 0.0001 99.52%
/ 96.67%

32 12 adam 0.001 26.78%
/ 24.80%

32 20 SGD 0.0001 93.16%
/ 88.30%

(Table 1: VGG16)

batch
size

epochs optimizer learning
rate

validation
/test accuracy

32 12 adam 0.0001 98.59%
/ 97.77%

32 20 adam 0.0001 98.31%
/ 97.27%

128 12 adam 0.0001 95.77%
/ 94.70%

32 12 adam 0.001 21.24%
/ 21.73%

32 20 SGD 0.0001 81.00%
/ 79.87%

(Table 2: VGG16 with data augmentation)

(Note: Validation accuracy represents the accuracy we
tested using a portion of the training dataset. And test
accuracy is the accuracy of the system scored after we

submitted the prediction.csv to the Kaggle competition.)

We can easily observe excellent performance when the
learning rate is 0.0001, and the optimizer is adam
(accuracies are all higher than 95%). However, when the
learning rate is 0.001, it is too large for the model to
converge, the loss never drops, and the accuracy never rises
from the first epoch to the end(always around 26%).

2

(Figure 2. VGG16 Training and Validation accuracy)

(Figure 3. VGG16 Training and Validation loss)

(Figure 4. SGD Training and Validation accuracy)

(Figure 5. SGD Training and Validation loss)

We can see from the above figure (Figure 2, 3, 4, 5) that
different optimizers have different learning curves. Adam
can learn a lot in the first 1~3 epoch to achieve high
accuracy and low loss. Nevertheless, the progress in the
latter epochs is relatively little. SGD, although the final
result is not as good as adam, its learning curve is smoother
and closer to linear, so if we run more epochs with VGG16
with SGD optimizer, we may be able to achieve a good
result.

（Figure 6. VGG16 with Data Augmentation Training and

Validation accuracy)

(Figure 7. VGG16 with Data Augmentation Training and

Validation loss)
We can see from Figure 2, 3, 6, 7 that the learning curve

for both cases are approximately the same, with one
significant difference that the VGG16 model with Data
Augmentation presents “zig-zag” patterns in both validation
accuracy and validation loss. We think the reason behind the
“zig-zag” pattern is that the Data Augmentation process
adds noise to the dataset. The added noise would help
prevent our model from overfitting on the given training set,
according to Chris M. Bishop, that “It is well known that the
addition of noise to the input data of a neural network
during training can, in some circumstances, lead to
significant improvements in generalization performance”[6].

3

VI. DISCUSSION AND CONCLUSION

1. Conclusion.
 i. According to Table 1, compared to the first
and third samples, it can be concluded that a larger
batch size will not have a better performance.
Besides, by comparing 12 epochs and 20 epochs'
accuracies, it can be shown that the improvement
of the epoch does not necessarily lead to better
performance. The reason for the above two
situations may be overfitting. By viewing the
second row and the last row, it is evident that adam
will result in significantly higher accuracy than
SGD. Moreover, VGG with adam optimizer is a
'quick learner' comparing to SGD since it always
reaches a good accuracy/loss performance within
three epochs. Therefore, adam is a better choice
when choosing the type of optimizer.
 ii. Data augmentation does not help with
improving the final accuracy comparing to each
row in Table 2 and Table 1, respectively.

2. Future work.
 i. Try to run more epochs with the SGD
optimizer because from the perspective of Figures
4 and 5, SGD has not yet reached its bottleneck.
 ii. We have just discussed the VGG model so
far. Stacking different models may be a possible
approach to improve the accuracy.
 iii. We can also try early stopping via a callback
called 'EarlyStopping' provided by Keras.

VII. APPENDIX

Introduction to Adam Optimizer and SGD Optimizer:
1. SGD optimizer:

The algorithm immediately calculates the gradient
of the loss function to update the parameters every
time one data is read.
θ = θ − η ⋅ ∇θJ(θ;x(i);y(i))

2. Adam Optimizer:
The Adam optimization algorithm is intuitively a
combination of RMSprop and AdaGrad. It
comprehensively considers the first Moment
Estimation of the gradient and the Second Moment
Estimation, which is the uncentralized variance of
the gradient and calculates the update step size.

VIII. STATEMENT OF CONTRIBUTIONS

Cheng Li: Data processing, Implementation of VGG and
other models, Report editing
Muhang Li: Data processing, Implementation VGG with
data augmentation, Report editing.
Chicheng Zheng: Data collection and analysis, Making
charts and tables, Report editing.

IX. REFERENCES
[1] Ng, A., Kian, K. and Younes, B. Convolutional Neural Networks,

Deep learning. ．Coursera and deeplearning.ai．2018
[2] Simonyan, K. and Zisserman, A., 2014. Very deep convolutional

networks for large-scale image recognition. arXiv preprint
arXiv:1409.1556.

[3] LeCun, Y. and Bengio, Y., 1995. Convolutional networks for images,
speech, and time series. The handbook of brain theory and neural
networks, 3361(10), 1995.

[4] Deng, J. and Dong, W. and Socher, R. and Li, L.-J. and Li, K. and
Fei-Fei, L. 2009. ImageNet: A Large-Scale Hierarchical Image
Database CVPR09

[5] Shorten, C. & Khoshgoftaar, T.M. J Big Data (2019) 6: 60.
https://doi.org/10.1186/s40537-019-0197-

[6] Bishop, C. M. (1995). Training with Noise is Equivalent to Tikhonov
Regularization. Neural Computation, 7(1), 108–116. doi:
10.1162/neco.1995.7.1.108

4

